바닷물에는 지구 열에너지의 90%가 저장된다. 해수면이 따뜻해지면 그 열에너지가 공기로 옮겨 가면서 태풍, 폭염, 집중호우 같은 현상을 일으킬 수 있다.
위성 관측은 해수면 온도를 광범위하게 모니터링할 수 있는 장점이 있지만, 시공간적 결측 구간이 자주 발생해 장기적이고 정확한 온도 예측에는 한계가 있다.
연구팀은 GAN 인공지능 모델에 고빈도 위성 관측자료와 수치예보모델의 열역학적 지식을 학습시켜, 위성의 결측 구간을 복원할 수 있는 모델을 만들었다.
GAN은 원래 이미지 생성에 주로 사용되는 모델이지만 이번 연구에서는 수치예보모델의 열역학 정보를 함께 학습시켜, 실제 해양 물리 조건에 부합하는 해수면 온도 데이터를 더욱 정밀하게 복원할 수 있도록 설계됐다.
임정호 교수는 “AI 기반 복원 기술은 태풍 발생이 잦고 기후 변동성이 큰 북서태평양 해역에서 고해상도 해수면 온도 데이터를 생산할 수 있다”며 “이 지역은 한반도 기후에도 직접적인 영향을 미치는 만큼, 날씨 예측과 기후 분석의 정밀도를 높이는 데 큰 도움이 될 것으로 기대되며 장기적으로 고수온 현상과 같은 해양 재해 대응에도 활용될 수 있을 것”이라고 말했다. 이다예기자 ties@ksilbo.co.kr
저작권자 © 울산일보 무단전재 및 재배포 금지